Preconditioning Subspace Iteration for Large Eigenvalue Problems with Automated Multi-Level Sub-structuring

نویسندگان

  • Heinrich Voss
  • Jiacong Yin
چکیده

The subspace iteration method (SIM) is a numerical procedure for normal mode analysis which has shown to be robust and reliable for solving very large general eigenvalue problems. Although its classical form as introduced by Bathe in the seventies of the last century is less efficient than the Lanczos iteration method in terms of CPU time, it is beneficial in terms of storage use if a very large number (say hundreds) of eigenmodes are needed and good approximations to the wanted eigenvectors are at hand. In this paper we take advantage of the automated multi-level sub-structuring (AMLS) to construct an accurate initial subspace for SIM. Along with the AMLS reduction we derive a very efficient preconditioning method for SIM which solves the linear systems for a transformed system with block diagonal system matrix whereas the multiplication with the mass matrix is executed in the original variables. Copyright c © 2010 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

Automated multi-level sub-structuring for fluid-solid interaction problems

The Automated Multi-Level Sub-structuring (AMLS) method is a powerful technique to determine a large number of eigenpairs with moderate accuracy of huge symmetric and definite eigenvalue problems in structural analysis. This paper is concerned with an adapted version of AMLS for eigenfrequency analysis of fluid-solid interaction systems. Although fluid-solid vibrations are governed by an unsymm...

متن کامل

Performance of Jacobi preconditioning in Krylov subspace solution of finite element equations

This paper examines the performance of the Jacobi preconditioner when used with two Krylov subspace iterative methods. The number of iterations needed for convergence was shown to be different for drained, undrained and consolidation problems, even for similar condition number. The differences were due to differences in the eigenvalue distribution, which cannot be completely described by the co...

متن کامل

Projection Methods for Nonlinear Sparse Eigenvalue Problems

This paper surveys numerical methods for general sparse nonlinear eigenvalue problems with special emphasis on iterative projection methods like Jacobi–Davidson, Arnoldi or rational Krylov methods and the automated multi–level substructuring. We do not review the rich literature on polynomial eigenproblems which take advantage of a linearization of the problem.

متن کامل

A preconditioned block conjugate gradient algorithm for computing extreme eigenpairs of symmetric and Hermitian problems

This report describes an algorithm for the efficient computation of several extreme eigenvalues and corresponding eigenvectors of a large-scale standard or generalized real symmetric or complex Hermitian eigenvalue problem. The main features are: (i) a new conjugate gradient scheme specifically designed for eigenvalue computation; (ii) the use of the preconditioning as a cheaper alternative to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013